Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38397757

RESUMO

Deficient wound healing is frequently observed in patients diagnosed with diabetes, a clinical complication that compromises mobility and leads to limb amputation, decreasing patient autonomy and family lifestyle. Fibroblasts are crucial for secreting the extracellular matrix (ECM) to pave the wound site for endothelial and keratinocyte regeneration. The biosynthetic pathways involved in collagen production and crosslinking are intimately related to fibroblast redox homeostasis. In this study, two sets of human dermic fibroblasts were cultured in normal (5 mM) and high (25 mM)-glucose conditions in the presence of 1 µM selenium, as sodium selenite (inorganic) and the two selenium amino acids (organic), Se-cysteine and Se-methionine, for ten days. We investigated the ultrastructural changes in the secreted ECM induced by these conditions using scanning electron microscopy (SEM). In addition, we evaluated the redox impact of these three compounds by measuring the basal state and real-time responses of the thiol-based HyPer biosensor expressed in the cytoplasm of these fibroblasts. Our results indicate that selenium compound supplementation pushed the redox equilibrium towards a more oxidative tone in both sets of fibroblasts, and this effect was independent of the type of selenium. The kinetic analysis of biosensor responses allowed us to identify Se-cysteine as the only compound that simultaneously improved the sensitivity to oxidative stimuli and augmented the disulfide bond reduction rate in high-glucose-cultured fibroblasts. The redox response profiles showed no clear association with the ultrastructural changes observed in matrix fibers secreted by selenium-treated fibroblasts. However, we found that selenium supplementation improved the ECM secreted by high-glucose-cultured fibroblasts according to endothelial migration assessed with a wound healing assay. Direct application of sodium selenite and Se-cysteine on purified collagen fibers subjected to glycation also improved cellular migration, suggesting that these selenium compounds avoid the undesired effect of glycation.

2.
Antioxidants (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627592

RESUMO

Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.

3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163595

RESUMO

In mammals, the daily variation in the ecology of the intestinal microbiota is tightly coupled to the circadian rhythm of the host. On the other hand, a close correlation between increased body weight and light pollution at night has been reported in humans and animal models. However, the mechanisms underlying such weight gain in response to light contamination at night remain elusive. In the present study, we tested the hypothesis that dim light pollution at night alters the colonic microbiota of mice, which could correlate with weight gain in the animals. By developing an experimental protocol using a mouse model that mimics light contamination at night in urban residences (dLAN, dim light at night), we found that mice exposed to dLAN showed a significant weight gain compared with mice exposed to control standard light/dark (LD) photoperiod. To identify possible changes in the microbiota, we sampled two stages from the resting period of the circadian cycle of mice (ZT0 and ZT10) and evaluated them by high-throughput sequencing technology. Our results indicated that microbial diversity significantly differed between ZT0 and ZT10 in both LD and dLAN samples and that dLAN treatment impacted the taxonomic composition, functions, and interactions of mouse colonic microbiota. Together, these results show that bacterial taxa and microbial metabolic pathways might be involved with the mechanisms underlying weight gain in mice subjected to light contamination at night.


Assuntos
Colo/microbiologia , Microbioma Gastrointestinal , Poluição Luminosa/efeitos adversos , Aumento de Peso , Animais , Camundongos
4.
Front Plant Sci ; 12: 688533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326856

RESUMO

Since drought is the leading environmental factor limiting crop productivity, and plants have a significant impact in defining the assembly of plant-specific microbial communities associated with roots, we aimed to determine the effect of thoroughly selected water deficit tolerant and susceptible Solanum lycopersicum cultivars on their rhizosphere microbiome and compared their response with plant-free soil microbial communities. We identified a total of 4,248 bacterial and 276 fungal different operational taxonomic units (OTUs) in soils by massive sequencing. We observed that tomato cultivars significantly affected the alpha and beta diversity of their bacterial rhizosphere communities but not their fungal communities compared with bulk soils (BSs), showing a plant effect exclusively on the bacterial soil community. Also, an increase in alpha diversity in response to water deficit of both bacteria and fungi was observed in the susceptible rhizosphere (SRz) but not in the tolerant rhizosphere (TRz) cultivar, implying a buffering effect of the tolerant cultivar on its rhizosphere microbial communities. Even though water deficit did not affect the microbial diversity of the tolerant cultivar, the interaction network analysis revealed that the TRz microbiota displayed the smallest and least complex soil network in response to water deficit with the least number of connected components, nodes, and edges. This reduction of the TRz network also correlated with a more efficient community, reflected in increased cooperation within kingdoms. Furthermore, we identified some specific bacteria and fungi in the TRz in response to water deficit, which, given that they belong to taxa with known beneficial characteristics for plants, could be contributing to the tolerant phenotype, highlighting the metabolic bidirectionality of the holobiont system. Future assays involving characterization of root exudates and exchange of rhizospheres between drought-tolerant and susceptible cultivars could determine the effect of specific metabolites on the microbiome community and may elucidate their functional contribution to the tolerance of plants to water deficit.

5.
Vet Res ; 52(1): 64, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933136

RESUMO

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is the most important infectious disease in the Chilean salmon farming industry. An opportunity to control this disease is to use functional micronutrients to modulate host mechanisms of response to the infection. Since P. salmonis may affect the host antioxidant system in salmonids, particularly that dependent on selenium (Se), we hypothesized that fish's dietary selenium supplementation could improve the response to the bacterial infection. To address this, we defined a non-antibiotic, non-cytotoxic concentration of selenium to evaluate its effect on the response to in vitro infections of SHK-1 cells with P. salmonis. The results indicated that selenium supplementation reduced the cytopathic effect, intracellular bacterial load, and cellular mortality of SHK-1 by increasing the abundance and activity of host glutathione peroxidase. We then prepared diets supplemented with selenium up to 1, 5, and 10 mg/kg to feed juvenile trout for 8 weeks. At the end of this feeding period, we obtained their blood plasma and evaluated its ability to protect SHK-1 cells from infection with P. salmonis in ex vivo assays. These results recapitulated the observed ability of selenium to protect against infection with P. salmonis by increasing the concentration of selenium and the antioxidant capacity in fish's plasma. To the best of our knowledge, this is the first report of the protective capacity of selenium against P. salmonis infection in salmonids, becoming a potential effective host-directed dietary therapy for SRS and other infectious diseases in animals at a non-antibiotic concentration.


Assuntos
Antioxidantes/metabolismo , Resistência à Doença , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/imunologia , Infecções por Piscirickettsiaceae/veterinária , Selênio/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/microbiologia , Plasma/química , Distribuição Aleatória , Selênio/administração & dosagem
6.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921734

RESUMO

Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in ß-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Genisteína/uso terapêutico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Androstenos/uso terapêutico , Animais , Western Blotting , Linhagem Celular Tumoral , Colesterol/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Doenças por Armazenamento dos Lisossomos , Lisossomos/metabolismo , Proteína C1 de Niemann-Pick/metabolismo
7.
Vet Res ; 51(1): 134, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115510

RESUMO

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is a severe bacterial disease in the Chilean salmon farming industry. Vaccines and antibiotics are the current strategies to fight SRS; however, the high frequency of new epizootic events confirms the need to develop new strategies to combat this disease. An innovative opportunity is perturbing the host pathways used by the microorganisms to replicate inside host cells through host-directed antimicrobial drugs (HDAD). Iron is a critical nutrient for P. salmonis infection; hence, the use of iron-chelators becomes an excellent alternative to be used as HDAD. The aim of this work was to use the iron chelator Deferiprone (DFP) as HDAD to treat SRS. Here, we describe the protective effect of the iron chelator DFP over P. salmonis infections at non-antibiotic concentrations, in bacterial challenges both in vitro and in vivo. At the cellular level, our results indicate that DFP reduced the intracellular iron content by 33.1% and P. salmonis relative load during bacterial infections by 78%. These findings were recapitulated in fish, where DFP reduced the mortality of rainbow trout challenged with P. salmonis in 34.9% compared to the non-treated group. This is the first report of the protective capacity of an iron chelator against infection in fish, becoming a potential effective host-directed therapy for SRS and other animals against ferrophilic pathogens.


Assuntos
Doenças dos Peixes/prevenção & controle , Ferro/farmacologia , Oncorhynchus mykiss , Piscirickettsia/fisiologia , Infecções por Piscirickettsiaceae/veterinária , Salmo salar , Sepse/veterinária , Fenômenos Fisiológicos da Nutrição Animal , Animais , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Ferro/química , Infecções por Piscirickettsiaceae/imunologia , Infecções por Piscirickettsiaceae/microbiologia , Infecções por Piscirickettsiaceae/prevenção & controle , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle
8.
Biol Res ; 53(1): 29, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631429

RESUMO

Arid environments are defined by the lack of water availability, which is directly related to the mean annual precipitation (MAP), and high values of solar irradiation, which impacts the community composition of animals, plants, and the microbial structure of the soil. Recent advances in NGS technologies have expanded our ability to characterize microbiomes, allowing environmental microbiologists to explore the complete microbial structure. Intending to identify and describe the state-of-the-art of bacterial communities in arid soils at a global scale, and to address the effect that some environmental features may have on them, we performed a systematic review based on the PRISMA guideline. Using a combination of keywords, we identified a collection of 66 studies, including 327 sampled sites, reporting the arid soil bacterial community composition by 16S rDNA gene high-throughput sequencing. To identify factors that can modulate bacterial communities, we extracted the geographical, environmental, and physicochemical data. The results indicate that even though each sampled site was catalogued as arid, they show wide variability in altitude, mean annual temperature (MAT), soil pH and electric conductivity, within and between arid environments. We show that arid soils display a higher abundance of Actinobacteria and lower abundance of Proteobacteria, Cyanobacteria, and Planctomycetes, compared with non-arid soil microbiomes, revealing that microbial structure seems to be strongly modulated by MAP and MAT and not by pH in arid soils. We observed that environmental and physicochemical features were scarcely described among studies, hence, we propose a reporting guideline for further analysis, which will allow deepening the knowledge of the relationship between the microbiome and abiotic factors in arid soil. Finally, to understand the academic collaborations landscape, we developed an analysis of the author's network, corroborating a low degree of connectivity and collaborations in this research topic. Considering that it is crucial to understand how microbial processes develop and change in arid soils, our analysis emphasizes the need to increase collaborations between research groups worldwide.


Assuntos
Microbiota , Microbiologia do Solo , Animais , Microbiota/genética , Plantas , Proteobactérias , Solo
9.
Microorganisms ; 8(6)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599933

RESUMO

Autochthonous microorganisms are an important source of the distinctive metabolites that influence the chemical profile of wine. However, little is known about the diversity of fungal communities associated with grape musts, even though they are the source of local yeast strains with potential capacities to become starters during fermentation. By using internal transcribed spacer (ITS) amplicon sequencing, we identified the taxonomic structure of the yeast community in unfermented and fermented musts of a typical Vitis vinifera L. var. Sauvignon blanc from the Central Valley of Chile throughout two consecutive seasons of production. Unsurprisingly, Saccharomyces represented the most abundant fungal genus in unfermented and fermented musts, mainly due to the contribution of S. uvarum (42.7%) and S. cerevisiae (80%). Unfermented musts were highly variable between seasons and showed higher values of fungal diversity than fermented musts. Since microbial physiological characterization is primarily achieved in culture, we isolated nine species belonging to six genera of fungi from the unfermented must samples. All isolates were characterized for their potential capacities to be used as new starters in wine. Remarkably, only Metschnikowia pulcherrima could co-exist with a commercial Saccharomyces cerevisiae strain under fermentative conditions, representing a feasible candidate strain for wine production.

10.
Bioorg Chem ; 100: 103935, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454391

RESUMO

Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial ß-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hidroquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidroquinonas/farmacologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
11.
Pathogens ; 9(5)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397152

RESUMO

Piscirickettsia salmons, the causative agent of piscirickettsiosis, is genetically divided into two genomic groups, named after the reference strains as LF-89-like or EM-90-like. Phenotypic differences have been detected between the P. salmonis genogroups, including antibiotic susceptibilities, host specificities and pathogenicity. In this study, we aimed to develop a rapid, sensitive and cost-effective assay for the differentiation of the P. salmonis genogroups. Using an in silico analysis of the P. salmonis 16S rDNA digestion patterns, we have designed a genogroup-specific assay based on PCR-restriction fragment length polymorphism (RFLP). An experimental validation was carried out by comparing the restriction patterns of 13 P. salmonis strains and 57 field samples obtained from the tissues of dead or moribund fish. When the bacterial composition of a set of field samples, for which we detected mixtures of bacterial DNA, was analyzed by a high-throughput sequencing of the 16S rRNA gene amplicons, a diversity of taxa could be identified, including pathogenic and commensal bacteria. Despite the presence of mixtures of bacterial DNA, the characteristic digestion pattern of the P. salmonis genogroups could be detected in the field samples without the need of a microbiological culture and bacterial isolation.

12.
Biol. Res ; 53: 29, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1124216

RESUMO

Abstract Arid environments are defined by the lack of water availability, which is directly related to the mean annual precipitation (MAP), and high values of solar irradiation, which impacts the community composition of animals, plants, and the microbial structure of the soil. Recent advances in NGS technologies have expanded our ability to characterize micro- biomes, allowing environmental microbiologists to explore the complete microbial structure. Intending to identify and describe the state-of-the-art of bacterial communities in arid soils at a global scale, and to address the effect that some environmental features may have on them, we performed a systematic review based on the PRISMA guideline. Using a combination of keywords, we identified a collection of 66 studies, including 327 sampled sites, reporting the arid soil bacterial community composition by 16S rDNA gene high-throughput sequencing. To identify factors that can modulate bacterial communities, we extracted the geographical, environmental, and physicochemical data. The results indicate that even though each sampled site was catalogued as arid, they show wide variability in altitude, mean annual temperature (MAT), soil pH and electric conductivity, within and between arid environments. We show that arid soils display a higher abundance of Actinobacteria and lower abundance of Proteobacteria, Cyanobacteria, and Planctomycetes, compared with non-arid soil microbiomes, revealing that microbial structure seems to be strongly modulated by MAP and MAT and not by pH in arid soils. We observed that environmental and physicochemical features were scarcely described among studies, hence, we propose a reporting guideline for further analysis, which will allow deepening the knowledge of the relationship between the microbiome and abiotic factors in arid soil. Finally, to understand the academic collaborations landscape, we developed an analysis of the author's network, corroborating a low degree of connectivity and collaborations in this research topic. Considering that it is crucial to understand how microbial processes develop and change in arid soils, our analysis emphasizes the need to increase collaborations between research groups worldwide.


Assuntos
Animais , Microbiologia do Solo , Microbiota/genética , Plantas , Solo , Proteobactérias
13.
Front Genet ; 10: 665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428125

RESUMO

Piscirickettsia salmonis is the etiologic agent of salmon rickettsial syndrome (SRS) and is responsible for considerable economic losses in salmon aquaculture. The bacterium affects coho salmon (CS; Oncorhynchus kisutch), Atlantic salmon (AS; Salmo salar), and rainbow trout (RT; Oncorhynchus mykiss) in several countries, including Norway, Canada, Scotland, Ireland, and Chile. We used Bayesian genome-wide association study analyses to investigate the genetic architecture of resistance to P. salmonis in farmed populations of these species. Resistance to SRS was defined as the number of days to death and as binary survival (BS). A total of 828 CS, 2130 RT, and 2601 AS individuals were phenotyped and then genotyped using double-digest restriction site-associated DNA sequencing and 57K and 50K Affymetrix® Axiom® single nucleotide polymorphism (SNP) panels, respectively. Both traits of SRS resistance in CS and RT appeared to be under oligogenic control. In AS, there was evidence of polygenic control of SRS resistance. To identify candidate genes associated with resistance, we applied a comparative genomics approach in which we systematically explored the complete set of genes adjacent to SNPs, which explained more than 1% of the genetic variance of resistance in each salmonid species (533 genes in total). Thus, genes were classified based on the following criteria: i) shared function of their protein domains among species, ii) shared orthology among species, iii) proximity to the SNP explaining the highest proportion of the genetic variance, and iv) presence in more than one genomic region explaining more than 1% of the genetic variance within species. Our results allowed us to identify 120 candidate genes belonging to at least one of the four criteria described above. Of these, 21 of them were part of at least two of the criteria defined above and are suggested to be strong functional candidates influencing P. salmonis resistance. These genes are related to diverse biological processes, such as kinase activity, GTP hydrolysis, helicase activity, lipid metabolism, cytoskeletal dynamics, inflammation, and innate immune response, which seem essential in the host response against P. salmonis infection. These results provide fundamental knowledge on the potential functional genes underpinning resistance against P. salmonis in three salmonid species.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31998656

RESUMO

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, a systemic infection of salmonid fish species. P. salmonis infects and survives in its host cell, a process that correlates with the expression of virulence factors including components of the type IVB secretion system. To gain further insights into the cellular and molecular mechanism behind the adaptive response of P. salmonis during host infection, we established an in vitro model of infection using the SHK-1 cell line from Atlantic salmon head kidney. The results indicated that in comparison to uninfected SHK-1 cells, infection significantly decreased cell viability after 10 days along with a significant increment of P. salmonis genome equivalents. At that time, the intracellular bacteria were localized within a spacious cytoplasmic vacuole. By using a whole-genome microarray of P. salmonis LF-89, the transcriptome of this bacterium was examined during intracellular growth in the SHK-1 cell line and exponential growth in broth. Transcriptome analysis revealed a global shutdown of translation during P. salmonis intracellular growth and suggested an induction of the stringent response. Accordingly, key genes of the stringent response pathway were up-regulated during intracellular growth as well as at stationary phase bacteria, suggesting a role of the stringent response on bacterial virulence. Our results also reinforce the participation of the Dot/Icm type IVB secretion system during P. salmonis infection and reveals many unexplored genes with potential roles in the adaptation to intracellular growth. Finally, we proposed that intracellular P. salmonis alternates between a replicative phase and a stationary phase in which the stringent response is activated.


Assuntos
Macrófagos/microbiologia , Piscirickettsia/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Salmão/microbiologia , Transcriptoma , Animais , Sistemas de Secreção Bacterianos , Linhagem Celular , Sobrevivência Celular , Citoplasma/microbiologia , Doenças dos Peixes/microbiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genoma Bacteriano , Rim , Macrófagos/metabolismo , Piscirickettsia/genética , Piscirickettsia/crescimento & desenvolvimento , Piscirickettsia/patogenicidade , Fatores de Virulência
15.
Sci Rep ; 8(1): 13190, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181620

RESUMO

Highly malignant triple-negative breast cancer (TNBC) cells rely mostly on glycolysis to maintain cellular homeostasis; however, mitochondria are still required for migration and metastasis. Taking advantage of the metabolic flexibility of TNBC MDA-MB-231 cells to generate subpopulations with glycolytic or oxidative phenotypes, we screened phenolic compounds containing an ortho-carbonyl group with mitochondrial activity and identified a bromoalkyl-ester of hydroquinone named FR58P1a, as a mitochondrial metabolism-affecting compound that uncouples OXPHOS through a protonophoric mechanism. In contrast to well-known protonophore uncoupler FCCP, FR58P1a does not depolarize the plasma membrane and its effect on the mitochondrial membrane potential and bioenergetics is moderate suggesting a mild uncoupling of OXPHOS. FR58P1a activates AMPK in a Sirt1-dependent fashion. Although the activation of Sirt1/AMPK axis by FR58P1a has a cyto-protective role, selectively inhibits fibronectin-dependent adhesion and migration in TNBC cells but not in non-tumoral MCF10A cells by decreasing ß1-integrin at the cell surface. Prolonged exposure to FR58P1a triggers a metabolic reprograming in TNBC cells characterized by down-regulation of OXPHOS-related genes that promote cell survival but comprise their ability to migrate. Taken together, our results show that TNBC cell migration is susceptible to mitochondrial alterations induced by small molecules as FR58P1a, which may have therapeutic implications.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Hidroquinonas/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Hidroquinonas/química , Integrina beta1/metabolismo , Sirtuína 1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo
16.
Extremophiles ; 22(4): 665-673, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687212

RESUMO

As a consequence of the severe climatic change affecting our entire world, many lakes in the Andes Cordillera are likely to disappear within a few decades. One of these lakes is Lejía Lake, located in the central Atacama Desert. The objectives of this study were: (1) to characterize the bacterial community from Lejía Lake shore soil (LLS) using 16S rRNA sequencing and (2) to test a culture-based approach using a soil extract medium (SEM) to recover soil bacteria. This extreme ecosystem was dominated by three phyla: Bacteroidetes, Proteobacteria, and Firmicutes with 29.2, 28.2 and 28.1% of the relative abundance, respectively. Using SEM, we recovered 7.4% of the operational taxonomic units from LLS, all of which belonged to the same three dominant phyla from LLS (6.9% of Bacteroidetes, 77.6% of Proteobacteria, and 15.3% of Firmicutes). In addition, we used SEM to recover isolates from LLS and supplemented the culture medium with increasing salt concentrations to isolate microbial representatives of salt tolerance (Halomonas spp.). The results of this study complement the list of microbial taxa diversity from the Atacama Desert and assess a pipeline to isolate selective bacteria that could represent useful elements for biotechnological approaches.


Assuntos
Lagos/microbiologia , Microbiota , Microbiologia do Solo , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Chile , Clima Desértico , Firmicutes/genética , Firmicutes/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Tolerância ao Sal
17.
Front Microbiol ; 7: 643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242682

RESUMO

The gram negative facultative bacterium P. salmonis is the etiological agent of Salmonid Rickettsial Septicaemia (SRS), a severe disease that causes important economic losses in the global salmon farmer industry. Despite efforts to control this disease, the high frequency of new epizootic events indicate that the vaccine and antibiotics treatments have limited effectiveness, therefore the preventive and diagnostic approaches must be improved. A comparison of several methodologies for SRS diagnostic indicate differences in their specificity and its capacity to detect other bacteria coexisting with P. salmonis in culture media (contamination) and fish samples (coinfection), aspects relevant for research, vaccine development and clinical diagnostic. By computer-simulation analyses, we identified a group of restriction enzymes that generate unique P. salmonis 16S rDNA band patterns, distinguishable from all other bacteria. From this information, we designed and developed a PCR-RFLP (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism) assay, which was validated using 16S rDNA universal primers and restriction enzyme PmaCI for the amplification and digestion, respectively. Experimental validation was performed by comparing the restriction pattern of P. salmonis with the restriction patterns generated by bacteria that cohabit with P. salmonis (fish bacterial isolates and culture media contaminants). Our results indicate that the restriction enzyme selection pipeline was suitable to design a more specific, sensible, faster and cheaper assay than the currently used P. salmonis detection methodologies.

18.
J Biotechnol ; 216: 149-50, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26521698

RESUMO

Microbacterium sp. CGR1 (RGM2230) is an isolate from the Atacama Desert that displays a wide pH, salinity and temperature tolerance. This strain exhibits riboflavin overproducer features and traits for developing an environmental arsenic biosensor. Here, we report the complete genome sequence of this strain, which represents the first genome of the genus Microbacterium sequenced and assembled in a single contig. The genome contains 3,634,864bp, 3299 protein-coding genes, 45 tRNAs, six copies of 5S-16S-23S rRNA and a high genome average GC-content of 68.04%.


Assuntos
Actinomycetales/genética , Actinomycetales/isolamento & purificação , Adaptação Fisiológica/genética , Clima Desértico , Genoma Bacteriano , Sequência de Bases , Chile
19.
Toxicon ; 108: 19-31, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410112

RESUMO

Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and ß subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and ß subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and ß subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis.


Assuntos
Venenos de Serpentes/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Camundongos , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Venenos de Serpentes/genética , Venenos de Serpentes/toxicidade , Serpentes/genética , Serpentes/metabolismo
20.
BMC Genomics ; 16: 495, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26141111

RESUMO

BACKGROUND: Piscirickettsiosis or Salmonid Rickettsial Septicaemia (SRS) is a bacterial disease that has a major economic impact on the Chilean salmon farming industry. Despite the fact that Piscirickettsia salmonis has been recognized as a major fish pathogen for over 20 years, the molecular strategies underlying the fish response to infection and the bacterial mechanisms of pathogenesis are poorly understood. We analysed and compared the head kidney transcriptional response of Atlantic salmon (Salmo salar) families with different levels of susceptibility to P. salmonis infection in order to reveal mechanisms that might confer infection resistance. RESULTS: We ranked forty full-sibling Atlantic salmon families according to accumulated mortality after a challenge with P. salmonis and selected the families with the lowest and highest cumulative mortalities for microarray gene expression analysis. A comparison of the response to P. salmonis infection between low and high susceptibility groups identified biological processes presumably involved in natural resistance to the pathogen. In particular, expression changes of genes linked to cellular iron depletion, as well as low iron content and bacterial load in the head kidney of fish from low susceptibility families, suggest that iron-deprivation is an innate immunity defence mechanism against P. salmonis. To complement these results, we predicted a set of iron acquisition genes from the P. salmonis genome. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed that most of these genes form part of the Fur regulon of P. salmonis. CONCLUSIONS: This study revealed, for the first time, differences in the transcriptional response to P. salmonis infection among Atlantic salmon families with varied levels of susceptibility to the infection. These differences correlated with changes in the abundance of transcripts encoding proteins directly and indirectly involved in the immune response; changes that highlighted the role of nutritional immunity through iron deprivation in host defence mechanisms against P. salmonis. Additionally, we found that P. salmonis has several mechanisms for iron acquisition, suggesting that this bacterium can obtain iron from different sources, including ferric iron through capturing endogenous and exogenous siderophores and ferrous iron. Our results contribute to determining the underlying resistance mechanisms of Atlantic salmon to P. salmonis infection and to identifying future treatment strategies.


Assuntos
Doenças dos Peixes/genética , Ferro/metabolismo , Piscirickettsia/patogenicidade , Infecções por Piscirickettsiaceae/genética , Salmo salar/genética , Salmo salar/microbiologia , Transcrição Gênica/genética , Animais , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/microbiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Expressão Gênica/genética , Dados de Sequência Molecular , Infecções por Piscirickettsiaceae/metabolismo , Infecções por Piscirickettsiaceae/microbiologia , Salmo salar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...